THE REACTIONS OF ORGANOLITHIUM COMPOUNDS WITH α , α -DIBROMOALDIMINES AND OF LITHIUM AMIDE WITH α -BROMINATED ALDIMINES

Lucette Duhamel and Jean-Yves Valnot

Laboratoire de Chimie Organique de la Faculté des Sciences et des Techniques de Rouen

76130 - Mont Saint Aignan, France

Abstract: B-Bromoenamines $\underline{4}$ and α -bromoaldehydes $\underline{6}$ are synthesised from the ambident anions $\underline{3}$ generated from either α -bromoaldimines $\underline{1}$ or α, α -dibromoaldimines $\underline{2}$.

Although ambident anions derived from imines have been extensively studied (1,2,3), derivatives with an α -halogen substituent were previously unknown. We now describe two independent routes (4) to these anions (i) by metalation of α -bromoaldimines $\underline{1}$ (5) and (ii) by halogen-metal exchange from α , α -dibromoaldimines $\underline{2}$ (6). α -Bromoimine anions $\underline{3}$ are stable to an excess of n-butyllithium.

R-CHBr-CH=NtBu
$$\xrightarrow{\begin{array}{c} 1 \text{ eq. iPr}_2\text{NLi} \\ -110^{\circ}\text{C; THF} \end{array}} \left\{ \begin{array}{c} \textbf{R} \\ \textbf{Br} \end{array} \right\} \xrightarrow{\begin{array}{c} \textbf{tBu} \\ \textbf{Li} \end{array} \xrightarrow{\begin{array}{c} 1 \text{ eq. nBuLi} \\ -70^{\circ}\text{C; THF} \end{array}} \xrightarrow{\text{R-CBr}_2\text{-CH=NtBu}}$$

Although the α -bromoimine anions $\underline{3}$ are ambident, protonation with methanol at -70°C led only to the N-protonated products, the β -bromoenamines 4 (4,7) in 79-87 % yield.

$$\frac{3}{-70^{\circ}\text{C}}$$
Br

CHNHtBu

$$\frac{\text{H}}{\text{Or } \Delta}$$
R-CHBr-CH=NtBu

$$\frac{1}{2}$$

Secondary β -haloenamines were previously unknown except when further conjugated (8,4). The secondary enamines $\underline{4}$ were stable for several days at -30°C; their transformation to the tautomeric α -bromoimines $\underline{1}$ occurred on distillation and was accelerated by traces of acid. The β -bromoenamines $\underline{4}$ were characterized by their spectral data: I R: 3350-3370, 1660 cm⁻¹; N M R (δ , CDCl₃, TMS): =CH 5,9 to 6,1 ppm; U V λ max $^{\sim}$ 224 nm (11000 l.mol⁻¹.cm⁻¹) in cyclohexane (compare with the values for the corresponding imines $\underline{1}$ (4,5); I R: 1670 cm⁻¹; N M R:

No. 35

7,3 ppm; U V : 217 nm $(110 \ l.mol^{-1}.cm^{-1})$.

Alkylation of the α -bromoimine anions $\underline{3}$ with allyl bromide gave only C-alkylated products. The intermediate imine $\underline{5}$ was hydrolyzed without isolation into the corresponding α -bromoaldehyde $\underline{6}$ (9) in 50-60 % yield. This provids an alternative and useful synthetic route to such compounds (10).

Unoptimised yield of aldehydes 6

Yield %	Н	СН3	^С 2 ^Н 5	nC ₅ H ₁₁
from 1	-	-	51	48
from 2	60 (11)	51 (11)	55	55

REFERENCES AND NOTES

- 1) G. WITTIG, H.D. FROMMELD, P. SUSHANEK, Angew. Chem. I.E. 1963, 683.
- 2) G. STORK, S. DOWD, J.Amer.Chem.Soc. 1968, 90, 2179.
- 3) T. CUVIGNY, H. NORMANT, Bull.Soc.Chim.Fr. 1970, 3976.
- 4) J.Y. VALNOT, Thèse Doctorat ès Sciences, Rouen Juin 1977.
- 5) Imines 1 were prepared according to P. DUHAMEL, L. DUHAMEL, J.Y. VALNOT, C.R.Acad.Sci. 1970, 271C, 1471.
- 6) Imines 2 were prepared according to N. de KIMPE, R. VERHE, L. de BUYCK, N. SCHAMP, Synth.Comm. 1975, 5(4), 269.
- 7) Enamines R-CBr=CHNHtBu 4 were isolated as crude products (purity > 90 %):

 R = CH₃: yield 79 %; C₂H₅: 87 %; nC₅H₁₁: 83 %. For results concerning secondary non halogenated enamines see: B. de JESO, J.C. POMMIER, Chem.Comm. 1977, 565.
- 8) H. ALBRECHT, M.T. REINER, Tetrahedron Letters 1971, 4901.
- 9) Spectral data are in good agreement with the proposed structure : I R 3080, 1730, 1645 cm^{-1} ; N M R (δ , TMS in CDCl₃); CHO 9,3-9,5 ppm; CH₂Br 2,7-2,8 ppm.
- 10) For results concerning the selective bromination of carbonyl compounds see:
 V.W. ARMSTRONG, N.H. CHISTE, R. RAMAGE, Tetrahedron Letters 1973, 373 and references cited.
- 11) Crude product; purity > 95 % by G L C.

(Received in UK 25 June 1979)